A Constraint-Based Approach to
Automatic Data Partitioning

Wonchan Lee
Computer Science Department
Stanford University

Advanced Modeling & Simulation (AMS) Seminar Series
NASA Ames Research Center, September 5th, 2019

Auto-Parallelizers for Distributed Systems

e Goal: automatically generate distributed memory code from sequential programs
e Focus on data parallel programs
o Numerous efforts in the past several decades

o High Performance Fortran and its predecessors (Fortran D, Vienna Fortran)

o Polyhedral compilers for distributed memory machines

Why are they not being used more widely?

Issue 1: Configurability

e Compilers have to make decisions without the information only available at runtime

parallel for p = 0, P:
int S = N/P // N = |[A]

int TA[S+1], 1B[S] :-r-vrererrmrmrmmrmrnrnents Partitioning of Aand B
for 1 in A: .
. . for i =0, S:
A[1] = f(1) TA[L] = F(PHSHL) ®-rrrrrrrmmmmmmmmeennnnn. Decomposition of loop
_’ iterations
for 1 in B: .
1ol . if p > 1: send(p-1, 1A[0]) L
B[i] = g(A[i+1]) if p < P-1: recv(p+1, &LA[S]) D RAEREEFEY Inter-node communication
Sequential Code for 1 = 0, S:

1B[1] = g(lA[i+1])

Distributed Code

o Decomposition of program and data must be determined at compile time, often by
hard-coded heuristics in the compiler

o Indirect accesses make the output program even more obscure (inspect/executor)

Issue 2: Composability

Hand-parallelized

Auto-parallelized

In practice, programs look like this:

Hand-parallelized

Auto-parallelized

We need for seamless integration,
but auto-parallelized parts are opaque to the rest of the program

Data Distributions in HPF

e Annotation language to describe the primary partition of data

o E.g, tilingonthefirstdimension of A:

REAL A(1000,10000)
'HPF$ DISTRIBUTE A(BLOCK,*)

e Canserve as an interface for both configuration and composition
o Support for sharing data partitions is key to configurability and composability

e Limited because “data distributions were not themselves data objects”T

T Ken Kennedy, Charles Koelbel, and Hans Zima. 2007. The Rise and Fall of High Performance Fortran: An Historical Object Lesson. In Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages. ACM, 7-1. 5

Programming Models with First-Class Partitions

Use as
is an abstraction over partitions of A
parallel for x in . constructed at runtime:
A =
for 1 in A: A[0] A[1] Al2] ALo] Al1] Al2]
A[l] = f(1)

A[O] A[2] A[1]
Examples: Legion, StarPU, PaRSEC

can naturally serve as an interface between different parts

Programming Models with First-Class Partitions

Can provide synchronization and communication from

parallel for x 1in :
A =
for 1 in A:
A[i] = f(1)
Implicit communication and synchronization for every 1 and j
such that pA1[i] n pA2[j] 2 @
parallel for x in pB:
A =
B = pB[x]
for 1 in B:
B[1] = g(A[1+1])

- Can be handled automatically by compilerior runtime systemT

1 Michael Bauer, Sean Treichler, Elliott Slaughter, Alex Aiken, Legion: expressing locality and independence with logical regions. SC12.
I E. Slaughter, W. Lee, S. Treichler, W. Zhang, M. Bauer, G. Shipman, P. McCormick, and A. Aiken, Control replication: Compiling implicit parallelism to efficient SPMD with logical regions, SC17. 7

Auto-Parallelization as Constraint Solving

Auto-parallelization amounts to finding legal partitions by solving partitioning constraints

parallel for x in pA1l:

é - PA-l[Xi o Find partitions pA1, pA2, and pB that satisty
or i in A: e
A[i] = f(1) these constraints:

@ pA1lcoversA

parallel for x in pB: © pBcoversB
A = pA2[x] _ . .
B = pB[x] ©® ForanyindexiinpB[x], pA2[x] includes i+1

for 1 in B2
B[1] = g(A[i+1]

Constraint-Based Automatic Data Partitioning

Parallelizes sequential program
using

Infers partitioning constraints

Discharges constraints with
interface constraints

E}).Hand-parallelized code

assert(m(some_ph)) ' ‘

= some_pA
parallel for x in

for 1 1n A:

A[l] = f(1)
require(m(ph)) Or, synthesizes partitioning code
parallel for x in pA: using constraint solver
A =
for 1 in A:
A[l] = f(1)

= partition(A,...)
parallel for x in

DPL as Constraint Language

e DPL(Dependent Partitioning Language)f: domain specific language for data partitioning
o DPL programs construct data partitions using high-level operators
o DPL operators have well-defined semantics and scalable implementation

e DPL can be used to describe both partitioning constraints and their solutions

T Sean Treichler, Michael Bauer, Rahul Sharma, Elliott Slaughter, and Alex Aiken, Dependent Partitioning, OOPSLA16. 10

Constructing Partitions with DPL

Example:

parallel for x in

A = pA2[x]
B =
for 1 in B: (3]

B[1] = g(A[1+1])

O Vj,Vice ,ii+1:€ pA2[]]
Afunction that
maps 1 to 1+1

pA2[0] pA2[1]

PA2 ‘A[l] A[Z]\ Partition of the range of Ai1.1+1
. - B A

Collectingimage of A1.1+1

B[0] B[1] B[2] Partition of the domain of Ai.1+1

DPL program: pA2 = image(pB, Ail.i+1)

11

Characterizing Legal Partitions with DPL

Example: Many partitions can satisfy the constraint
pA2[0] pA2[1] pA2[0] pA2[1]
parallel for x in p&: PA2 ‘A[l] A[Z]\ A[1]A[2]|AL3] E3] A[4]
A = pA2[x] ——— - ——— p
for 1 in B: L
B[1] = g(A[1+1]) B[0]|B[1] B[2] B[0] B[1] B[2]
Vi, Vi e , i+1 € pA2[j5]

Constraint that characterize all legal partitions for pA2:

image(pk, Ai.i1+1) C pA2
The program pA2 = image(pt, Ai.i+1) isone solution of this constraint

12

Example: Particle Simulation

Updates the position of every particle using the velocity of cells

for 1 in PT:
c = PT[1].cell
PT[1].pos = f(C[c].vel,C[n(c)].vel)

PT[-].cell

C (Cells)

13

Constraint Inference

|dentifies necessary data partitions N
Needs two partitions pC1 and pC2 of C
for different access patterns
‘‘‘‘‘ v for 1 in PT:
............ Cc = PT[I] .cell - "
Needs a partition pPT of PT PT[1].pos = f(C[c].vel,C[n(c)].vel)

Infers partitioning constraints

Must run all iterations
require(complete(LPT)) < at least once

require(image(pP7,PT[-].cell) < pC1)
require(image(pCi,n) S pC2) Afunctionthat maps
paral'l.el for x in particles to cells
PT = [x]; C1 = pCi[x]; C2 = pC2[x]
for 1 in PT:
N : . c = PT[1].cell
Vi, Vi€ , PT[i].cell € pC1[j] PT[1].pos = f(C1[c].vel,C2[n(c)].vel)

Vj,Vi e pCl[jl, n(i) € pC2[j]

14

Solving Constraints

Two solutions for require(image(,PT[-].cell) <

ez, PCLLO]

pC1[1]

= equal(PT,N)
= image(L,PT[+].cell)

require(complete(,PT))
require(image(,PT[+].cell) € pCl)
require(image(pCi,n) € pC2)

pC1[0] pC1[1]

pC1l = equal(C,N)
= preimage(PT[-].cell,pCl)
Solve
constraints = equal(PT,N)
e smneensene iy pCl = image(pPT,PT[-].cell)
pC2 = image(pCi,n)

15

Handling Multiple Loops

One loop = One set of partitioning constraints

for i in PT: require(complete(,PT))

c = PT[1].cell require(image(,PT[-].cell) € pCl)
PT[1].pos = g(C[c].vel,C[n(c)].vel) require(image(pCi,n) S pC2)

for i in C: require(complete(pC3,C))
C[i].vel = h(C[i].acc,C[n(1)].acc) require(image(pC3,n) S pC4)

v Capture all possible partitioning strategies

X Can lead to excessive communication if solved naively

16

Handling Multiple Loops

Constraint solver unifies partitions to maximize partition reuse

for i in PT: require(complete(,PT))

= PT[i].cell ... require(image(p/1,PT[-].cell) < pC1)
PT[1] pos = g(C[c].vel; QLQSQ)J vel) -require(image(pCi,n) < pCZ)”;
for itinC: require(complete(pC3,C))
C[i].vel = h(C[i].acc; QLQQE}J acc) ‘require(image(pC3,n) < pC4) :
Similar access patterns Isomorphic constraints
Unified!
pC3 = pCi:= equal(PT,N)

O
N
N

1

O
(@)
N

1

Solution: +pC4 = pC2 image(pC1,n)
= prelmage(PT[].cell,pC1)

17

External Constraints

In the real simulation code, particles might
move to different cells,

while t < T:
for 1 in PT:
c = PT[1].cell
PT[1].pos = g(C[c].vel,
C[n(c)].vel) solve

constraints
N i
or L in C:
C[i].vel = g(C[i].acc,
C[n(1)].acc)

for 1 in PT:
PT[1].cell = h(PT[1].pos)

requiring pPT to be repartitioned
every time step &

pCl = equal(C,N)
pC2 = image(pCi,n)
while t < T:

pPT = preimage(PT[:].cell,pCl)

18

External Constraints

User can manually parallelize particle transfer code

and provide external constraints as an interface: pC3 = pC1 = pCell
pC4 = pC2 = image(pCell,n)
while t < T: while t < T:
ce Solve constraints with ce
// Manual particle transfer code using external constraints // Manual particle transfer code
// pParticle and pCell B

ce pPT = pParticle
=T o of (U ces

:image(pParticle,PT[-].cell) < pCell),)

ll ¢

Partitioning constraints: Unifiable constraints No more repartitioning @

--

External constraints provide a precise control
over the automated data partitioning process

19

Evaluation

o Implemented the constraint inference and solver algorithms in Regent'
e Regentis a high-level programming language with first-class data partitions and DPL

o Weak scaling performance of four benchmark programs

Stencil: 9-point stencil in 2D grid

MiniAero: explicit Navier-stokes solver on hexahedral 3D mesh

o Circuit: circuit simulator on unstructured circuit graphs

PENNANT: Lagrangian hydrodynamics on unstructured 2D mesh
e Machine: Piz Daint (12-core Xeon E5-2690, NVIDIA P100, and 64 GB memory per node)

e All benchmark programs ran on GPUs

 Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, Alex Aiken, Regent: a high-productivity programming language for HPC with logical regions. SC15. 20

Weak Scaling: Stencil and MiniAero

Stencil (0.9 10° points/node, Piz Daint) MiniAero (2.1 x 10° Cells/node, Piz Daint)
12 10
a3 @
£ 10; T
8_ :;) 81
= E
(] 6

g 3
c 6 E
= 0]
g o 4
5 4 3
Q <
L 2 2
3 21 -@- Manual § -@- Manual
= -@- Auto < -@- Auto
i : , , , , , , , , I , , , , , , , ,

L - T O S A T N R R

Nodes Nodes

Auto-parallelized programs match hand-parallelized programs within 3%

21

Weak Scaling: Circuit

Circuit (100 x 10% wires/node, Piz Daint) Circuit (100 x 10® wires/node, Piz Daint)

0 V¢ U—0—0—9——»

11 @~ Manual
- Auto

11 @~ Manual

Auto+Interface

Throughput per node (106 wires/s)
Throughput per node (10° wires/s)

ok \flq’ '),56 > 2 & ® 40 2L o \fl% ff)@
Nodes

Auto-Parallelized Circuit

Parallel Circuit
Generator

Auto-Parallelized complete(pNodes_private U pNodes_shared,Nodes)

Generator uses two node partitions: Compute Tasks
pNodes_private and pNodes_shared

22

Weak Scaling: PENNANT

PENNANT (1.8 x 10° zones/node, Piz Daint)

PENNANT (1.8 x 10° zones/node, Piz Daint)

2 160 2 1601 =00 0o o

%140- §140' T

S 1201 S 1201 ,\\\u

§ 1001 % 1001

S 801 S 801

(O] (]

o 60] S 601

3 =}

£ 40 £ 401

3 3 .| @ Manual

3 20] -@- Manual 3 20/ anua

< - Auto c Auto+Interface

= . . i [ol

N 1 DY L) A0 o4 o™ \fl% ,.)’56 N 1 DY 2 A0 %51 o ‘\"7'% ,Lc)@
Two points partitions: Nodes Nodes
pPoints_private and pPoints_shared Ayto-Parallelized PENNANT
Parallel Mesh
Generator
Auto-Parallelized complete(pPoints_private U pPoints_shared,Points)

Each side of a polygon colocates with Compute Tasks image(pSides,Sides[-].prev_side) < pSides
its previous and next sides image(pSides,Sides[:].next side) € pSides 23

Case Study: Soleil-X

e Developed for the PSAAP Il program at Stanford
e Eulerian Fluid + Lagrangian Particles + Radiation (DOM/Algebraic)
e DOMis manually parallelized

o Fluid and particles are auto-parallelized except for particle transfers

Heated section of concentrated
solar energy receiver

Soleil-X Performance

Strong Scaling (5122x256 Cells, 4M Particles) Weak Scaling (256 Cells/Node, 1M Particles/Node)
3.0
— =25
ﬁ 102 ﬁ
] 820
% %
c - 15
> 3
by oy
5 10' 21.0
< o
< H <
= ~@- Fluid Only (CPU, Piz Daint) 92X speedup at 512 for fluid F 051 _@- Fluid only (CPU, Piz Daint) T7% parallel efficiency
~®- Fluid+Particles (CPU, Piz Daint) 65X speedup at 256 with particles ~®- Fluid+Particles (CPU, Piz Daint) (9,216 CPUs)
0.0
A2 b A0 2l M \"L% ,Lc)() 6\} XQ’LD‘ v b A0)l '\,’1«% ,Lc)QJ 6*\,’7« ,\‘Q’LD(
Nodes Nodes
Strong Scaling (5123 Cells, 8M Particles) Weak Scaling (512x256% Cells/Node, 2M Particles/Node)
7
w ve6
2 102 2
5] &s
k) k)
= Z4
H H
< c 3
j=2) j=2]
> >
o o2
c . <
F 10t Fluid Only (CPU, Quartz) 17X speedup at 128 for fluid i Fluid Only (CPU, Quartz) 79% parallel efficiency
~®— Fluid+Particles (CPU, Quartz) 15X speedup at 128 with particles ~®- Fluid+Particles (CPU, Quartz) (30,720 CPUs)
I’
N 1 B 2 NS %51 o '\'LQ’ ,L%@ N 1 Y L R \"L% ,Lg(‘) ‘)\"L '\'Q’th

Nodes Nodes

25

Soleil-X Performance

Weak Scaling (67M Cells/Node, 32M Particles/Node)

121

10'H\‘\~0~H\-\.

Throughput (10° Cells/s)
[e)]

21 82% parallel efficiency
-@- Fluid+Particles (GPU, Sierra) (1,024 GPUs)

N 1 Y) A0 o o™ '\’L%
Nodes

26

Case Study: HTR Solver

o Solves multi-component Navier-Stokes equations in compressible formulation

o Accounts for complex chemistry and multicomponent transport

o Heavy flux tasks are auto-parallelized

Hypersonic Task-based Research (HTR) solver

Transport equations

p;

2LV (pu+pV) =, fori=1...N, *TENOG6 low-dissipation scheme for Euler

o oo " T fluxes

9 (pu) +V-(puu)=V.-T-Vp »Second-order scheme for diffusion fluxes
ot

P (pE N, «Shock capturing capabilities

7 TV (puH) =V -GVT) +V - (7u) = 3, V- (o V) +Multicomponent transport
i
N,
_ . « Arrhenius chemistry computed at runtime

Vi=-DiVinX+ Z YD, Vin X; with or without time-operator splitting
1
i o i PXW; +Thermo-physical and transport properties

- pi=p= - ROT computed at runtime

i i

T Courtesy of Dr. Mario Di Renzo at Stanford (mariodr@stanford.edu)

Hypersonic transitional boundary layer (low-enthalpy)
Reference: Franko and Lele (2013)

“1000
[Vol/IV plinas

Re;, = 3000 M“oo7'

T 00 0.10 0.35 0.60 0.85 1.10
]

w

— =65 p/poc

To

27

HTR Performance

Quartz (CPUs) Lassen (GPUs)
1 .\'—H/’\O——’—O\.\. .
0.8 0.8
9 %
g) 0.6 5 0.6
S 9
&gl e
0.2 0.2
oorr——— 0.0
R N T L L s L R (O LN LS
Nodes Nodes
81% efficiency 68% efficiency
18,432 CPUs 1,024 GPUs
400M points 4.8B points

1s/timestep 0.7s/timestep

28

Conclusion

e First-class data partitions enable composable and configurable auto-parallelization

e A constraint-based data partitioning brings scalability of manual parallelization to auto-
parallelized programs

29

Questions?

LEGION PROGRAMMING SYSTEM

P
. L’)os Alamos

NATIONAL LABORATORY

<ANVIDIA.

Legion

A Data-Centric Parallel
Programming System

@ Github

OVERVIEW ~ GETTINGSTARTED TUTORIALS ~ BOOTCAMP DOCUMENTATION ~ PUBLICATIONS RESOURCES

Legion is a data-centric parallel programming system for writing portable high performance programs targeted
at distributed heterogeneous architectures. Legion presents abstractions which allow programmers to describe
properties of program data (e.g. independence, locality). By making the Legion programming system aware of
the structure of program data, it can automate many of the tedious tasks programmers currently face, including
correctly extracting task- and data-level parallelism and moving data around complex memory hierarchies. A
novel mapping interface provides explicit programmer controlled placement of data in the memory hierarchy
and assignment of tasks to processors in a way that is orthogonal to correctness, thereby enabling easy porting
and tuning of Legion applications to new architectures.

To learn more about Legion you can:

* Read the overview

* Visit the getting started page

* Download our publications

* Ask questions on our mailing list

About Legion

Legion is developed as an open source project, with major contributions from LANL, NVIDIA Research, SLAC,
and Stanford. This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed platforms, in support of the
nation’s exascale computing imperative. Additional support has been provided to LANL and SLAC via the
Department of Energy Office of Advanced Scientific Computing Research and to NVIDIA, LANL and Stanford
from the U.S. Department of Energy National Nuclear Security Administration Advanced Simulation and
Computing Program. Previous support for Legion has included the U.S. Department of Energy’s ExaCT
Combustion Co-Design Center and the Scientific Data Management, Analysis and Visualization (SDMAV)
program, DARPA, the Army High Performance Computing Research Center, and NVIDIA, and grants from OLCF,
NERSC, and the Swiss National Supercomputing Centre (CSCS).

Legion Contributors

Stanford SLAC LANL NVIDIA

Todd Warszawski Elliott Slaughter Pat McCormick Michael Bauer
‘Wonchan Lee Alan Heirich Samuel Gutierrez (NVIDIA site)
Zhihao Jia Seema Mirchandaney Galen Shipman Sean Treichler
Karthik Srinivasa Murthy Seshu Yamajala Jonathan Graham

Manolis Papadakis Irina Demeshko

Alex Aiken Nick Moss

Wei Wu

© 2019 Legion. Powered by Jekyll using the Minimal Mistakes theme.

https://legion.stanford.edu

